\(\int \frac {(d^2-e^2 x^2)^{5/2}}{x^5 (d+e x)} \, dx\) [112]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 119 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\frac {e^2 (3 d-8 e x) \sqrt {d^2-e^2 x^2}}{8 x^2}-\frac {(3 d-4 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 x^4}-e^4 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {3}{8} e^4 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \]

[Out]

-1/12*(-4*e*x+3*d)*(-e^2*x^2+d^2)^(3/2)/x^4-e^4*arctan(e*x/(-e^2*x^2+d^2)^(1/2))-3/8*e^4*arctanh((-e^2*x^2+d^2
)^(1/2)/d)+1/8*e^2*(-8*e*x+3*d)*(-e^2*x^2+d^2)^(1/2)/x^2

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {864, 825, 858, 223, 209, 272, 65, 214} \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=e^4 \left (-\arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )\right )-\frac {3}{8} e^4 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )+\frac {e^2 (3 d-8 e x) \sqrt {d^2-e^2 x^2}}{8 x^2}-\frac {(3 d-4 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 x^4} \]

[In]

Int[(d^2 - e^2*x^2)^(5/2)/(x^5*(d + e*x)),x]

[Out]

(e^2*(3*d - 8*e*x)*Sqrt[d^2 - e^2*x^2])/(8*x^2) - ((3*d - 4*e*x)*(d^2 - e^2*x^2)^(3/2))/(12*x^4) - e^4*ArcTan[
(e*x)/Sqrt[d^2 - e^2*x^2]] - (3*e^4*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/8

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 825

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(d + e*x)^
(m + 1))*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)))*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*
p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e^2) + 2*c*d*p*(e*f - d*g))*x), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^
2 + a*e^2)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p +
 1) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e
^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 864

Int[((x_)^(n_.)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(x/e))*(a + c*x
^2)^(p - 1), x] /; FreeQ[{a, c, d, e, n, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||
  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {(d-e x) \left (d^2-e^2 x^2\right )^{3/2}}{x^5} \, dx \\ & = -\frac {(3 d-4 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 x^4}-\frac {\int \frac {\left (6 d^3 e^2-8 d^2 e^3 x\right ) \sqrt {d^2-e^2 x^2}}{x^3} \, dx}{8 d^2} \\ & = \frac {e^2 (3 d-8 e x) \sqrt {d^2-e^2 x^2}}{8 x^2}-\frac {(3 d-4 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 x^4}+\frac {\int \frac {12 d^5 e^4-32 d^4 e^5 x}{x \sqrt {d^2-e^2 x^2}} \, dx}{32 d^4} \\ & = \frac {e^2 (3 d-8 e x) \sqrt {d^2-e^2 x^2}}{8 x^2}-\frac {(3 d-4 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 x^4}+\frac {1}{8} \left (3 d e^4\right ) \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx-e^5 \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx \\ & = \frac {e^2 (3 d-8 e x) \sqrt {d^2-e^2 x^2}}{8 x^2}-\frac {(3 d-4 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 x^4}+\frac {1}{16} \left (3 d e^4\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )-e^5 \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right ) \\ & = \frac {e^2 (3 d-8 e x) \sqrt {d^2-e^2 x^2}}{8 x^2}-\frac {(3 d-4 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 x^4}-e^4 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{8} \left (3 d e^2\right ) \text {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right ) \\ & = \frac {e^2 (3 d-8 e x) \sqrt {d^2-e^2 x^2}}{8 x^2}-\frac {(3 d-4 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 x^4}-e^4 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {3}{8} e^4 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.27 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\frac {1}{24} \left (\frac {\sqrt {d^2-e^2 x^2} \left (-6 d^3+8 d^2 e x+15 d e^2 x^2-32 e^3 x^3\right )}{x^4}+48 e^4 \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )-\frac {9 \sqrt {d^2} e^4 \log (x)}{d}+\frac {9 \sqrt {d^2} e^4 \log \left (\sqrt {d^2}-\sqrt {d^2-e^2 x^2}\right )}{d}\right ) \]

[In]

Integrate[(d^2 - e^2*x^2)^(5/2)/(x^5*(d + e*x)),x]

[Out]

((Sqrt[d^2 - e^2*x^2]*(-6*d^3 + 8*d^2*e*x + 15*d*e^2*x^2 - 32*e^3*x^3))/x^4 + 48*e^4*ArcTan[(e*x)/(Sqrt[d^2] -
 Sqrt[d^2 - e^2*x^2])] - (9*Sqrt[d^2]*e^4*Log[x])/d + (9*Sqrt[d^2]*e^4*Log[Sqrt[d^2] - Sqrt[d^2 - e^2*x^2]])/d
)/24

Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.06

method result size
risch \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}\, \left (32 e^{3} x^{3}-15 d \,e^{2} x^{2}-8 d^{2} e x +6 d^{3}\right )}{24 x^{4}}-\frac {e^{5} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{\sqrt {e^{2}}}-\frac {3 e^{4} d \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{8 \sqrt {d^{2}}}\) \(126\)
default \(\frac {-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{4 d^{2} x^{4}}-\frac {3 e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{2 d^{2} x^{2}}-\frac {5 e^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{2 d^{2}}\right )}{4 d^{2}}}{d}+\frac {e^{4} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{d^{5}}+\frac {e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{2 d^{2} x^{2}}-\frac {5 e^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{2 d^{2}}\right )}{d^{3}}-\frac {e^{3} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{d^{2} x}-\frac {6 e^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )}{d^{2}}\right )}{d^{4}}-\frac {e \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{3 d^{2} x^{3}}-\frac {4 e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{d^{2} x}-\frac {6 e^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )}{d^{2}}\right )}{3 d^{2}}\right )}{d^{2}}-\frac {e^{4} \left (\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+d e \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 e^{2}}+\frac {3 d^{2} \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{4 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )\right )}{d^{5}}\) \(904\)

[In]

int((-e^2*x^2+d^2)^(5/2)/x^5/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

-1/24*(-e^2*x^2+d^2)^(1/2)*(32*e^3*x^3-15*d*e^2*x^2-8*d^2*e*x+6*d^3)/x^4-e^5/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/
(-e^2*x^2+d^2)^(1/2))-3/8*e^4*d/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\frac {48 \, e^{4} x^{4} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + 9 \, e^{4} x^{4} \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) - {\left (32 \, e^{3} x^{3} - 15 \, d e^{2} x^{2} - 8 \, d^{2} e x + 6 \, d^{3}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{24 \, x^{4}} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^5/(e*x+d),x, algorithm="fricas")

[Out]

1/24*(48*e^4*x^4*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + 9*e^4*x^4*log(-(d - sqrt(-e^2*x^2 + d^2))/x) - (3
2*e^3*x^3 - 15*d*e^2*x^2 - 8*d^2*e*x + 6*d^3)*sqrt(-e^2*x^2 + d^2))/x^4

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.16 (sec) , antiderivative size = 541, normalized size of antiderivative = 4.55 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=d^{3} \left (\begin {cases} - \frac {d^{2}}{4 e x^{5} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} + \frac {3 e}{8 x^{3} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} - \frac {e^{3}}{8 d^{2} x \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} + \frac {e^{4} \operatorname {acosh}{\left (\frac {d}{e x} \right )}}{8 d^{3}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i d^{2}}{4 e x^{5} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {3 i e}{8 x^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + \frac {i e^{3}}{8 d^{2} x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e^{4} \operatorname {asin}{\left (\frac {d}{e x} \right )}}{8 d^{3}} & \text {otherwise} \end {cases}\right ) - d^{2} e \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{3 x^{2}} + \frac {e^{3} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{3 d^{2}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i e \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{3 x^{2}} + \frac {i e^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{3 d^{2}} & \text {otherwise} \end {cases}\right ) - d e^{2} \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{2 x} + \frac {e^{2} \operatorname {acosh}{\left (\frac {d}{e x} \right )}}{2 d} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i d^{2}}{2 e x^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e}{2 x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e^{2} \operatorname {asin}{\left (\frac {d}{e x} \right )}}{2 d} & \text {otherwise} \end {cases}\right ) + e^{3} \left (\begin {cases} \frac {i d}{x \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + i e \operatorname {acosh}{\left (\frac {e x}{d} \right )} - \frac {i e^{2} x}{d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\- \frac {d}{x \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - e \operatorname {asin}{\left (\frac {e x}{d} \right )} + \frac {e^{2} x}{d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) \]

[In]

integrate((-e**2*x**2+d**2)**(5/2)/x**5/(e*x+d),x)

[Out]

d**3*Piecewise((-d**2/(4*e*x**5*sqrt(d**2/(e**2*x**2) - 1)) + 3*e/(8*x**3*sqrt(d**2/(e**2*x**2) - 1)) - e**3/(
8*d**2*x*sqrt(d**2/(e**2*x**2) - 1)) + e**4*acosh(d/(e*x))/(8*d**3), Abs(d**2/(e**2*x**2)) > 1), (I*d**2/(4*e*
x**5*sqrt(-d**2/(e**2*x**2) + 1)) - 3*I*e/(8*x**3*sqrt(-d**2/(e**2*x**2) + 1)) + I*e**3/(8*d**2*x*sqrt(-d**2/(
e**2*x**2) + 1)) - I*e**4*asin(d/(e*x))/(8*d**3), True)) - d**2*e*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/(3*
x**2) + e**3*sqrt(d**2/(e**2*x**2) - 1)/(3*d**2), Abs(d**2/(e**2*x**2)) > 1), (-I*e*sqrt(-d**2/(e**2*x**2) + 1
)/(3*x**2) + I*e**3*sqrt(-d**2/(e**2*x**2) + 1)/(3*d**2), True)) - d*e**2*Piecewise((-e*sqrt(d**2/(e**2*x**2)
- 1)/(2*x) + e**2*acosh(d/(e*x))/(2*d), Abs(d**2/(e**2*x**2)) > 1), (I*d**2/(2*e*x**3*sqrt(-d**2/(e**2*x**2) +
 1)) - I*e/(2*x*sqrt(-d**2/(e**2*x**2) + 1)) - I*e**2*asin(d/(e*x))/(2*d), True)) + e**3*Piecewise((I*d/(x*sqr
t(-1 + e**2*x**2/d**2)) + I*e*acosh(e*x/d) - I*e**2*x/(d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1),
 (-d/(x*sqrt(1 - e**2*x**2/d**2)) - e*asin(e*x/d) + e**2*x/(d*sqrt(1 - e**2*x**2/d**2)), True))

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.44 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=-\frac {e^{5} \arcsin \left (\frac {e^{2} x}{d \sqrt {e^{2}}}\right )}{\sqrt {e^{2}}} - \frac {3}{8} \, e^{4} \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{{\left | x \right |}}\right ) + \frac {3 \, \sqrt {-e^{2} x^{2} + d^{2}} e^{4}}{8 \, d} - \frac {\sqrt {-e^{2} x^{2} + d^{2}} e^{3}}{x} + \frac {3 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{2}}{8 \, d x^{2}} + \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e}{3 \, x^{3}} - \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} d}{4 \, x^{4}} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^5/(e*x+d),x, algorithm="maxima")

[Out]

-e^5*arcsin(e^2*x/(d*sqrt(e^2)))/sqrt(e^2) - 3/8*e^4*log(2*d^2/abs(x) + 2*sqrt(-e^2*x^2 + d^2)*d/abs(x)) + 3/8
*sqrt(-e^2*x^2 + d^2)*e^4/d - sqrt(-e^2*x^2 + d^2)*e^3/x + 3/8*(-e^2*x^2 + d^2)^(3/2)*e^2/(d*x^2) + 1/3*(-e^2*
x^2 + d^2)^(3/2)*e/x^3 - 1/4*(-e^2*x^2 + d^2)^(3/2)*d/x^4

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 328 vs. \(2 (105) = 210\).

Time = 0.30 (sec) , antiderivative size = 328, normalized size of antiderivative = 2.76 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\frac {{\left (3 \, e^{5} - \frac {8 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} e^{3}}{x} - \frac {24 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{2} e}{x^{2}} + \frac {120 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{3}}{e x^{3}}\right )} e^{8} x^{4}}{192 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{4} {\left | e \right |}} - \frac {e^{5} \arcsin \left (\frac {e x}{d}\right ) \mathrm {sgn}\left (d\right ) \mathrm {sgn}\left (e\right )}{{\left | e \right |}} - \frac {3 \, e^{5} \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |} \right |}}{2 \, e^{2} {\left | x \right |}}\right )}{8 \, {\left | e \right |}} - \frac {\frac {120 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} e^{5} {\left | e \right |}}{x} - \frac {24 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{2} e^{3} {\left | e \right |}}{x^{2}} - \frac {8 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{3} e {\left | e \right |}}{x^{3}} + \frac {3 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{4} {\left | e \right |}}{e x^{4}}}{192 \, e^{4}} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^5/(e*x+d),x, algorithm="giac")

[Out]

1/192*(3*e^5 - 8*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))*e^3/x - 24*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^2*e/x^2 +
120*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^3/(e*x^3))*e^8*x^4/((d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^4*abs(e)) - e^
5*arcsin(e*x/d)*sgn(d)*sgn(e)/abs(e) - 3/8*e^5*log(1/2*abs(-2*d*e - 2*sqrt(-e^2*x^2 + d^2)*abs(e))/(e^2*abs(x)
))/abs(e) - 1/192*(120*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))*e^5*abs(e)/x - 24*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e
))^2*e^3*abs(e)/x^2 - 8*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^3*e*abs(e)/x^3 + 3*(d*e + sqrt(-e^2*x^2 + d^2)*abs
(e))^4*abs(e)/(e*x^4))/e^4

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}}{x^5\,\left (d+e\,x\right )} \,d x \]

[In]

int((d^2 - e^2*x^2)^(5/2)/(x^5*(d + e*x)),x)

[Out]

int((d^2 - e^2*x^2)^(5/2)/(x^5*(d + e*x)), x)